
International Journal of Heat and Mass Transfer 52 (2009) 2169–2188
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate/ i jhmt
Review

Review of utilization of genetic algorithms in heat transfer problems

Louis Gosselin *, Maxime Tye-Gingras, François Mathieu-Potvin
Département de génie mécanique, Université Laval, 1065 avenue de la Médecine, Québec City, Que., Canada G1V 0A6

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 September 2008
Received in revised form 22 November 2008
Available online 27 January 2009

Keywords:
Genetic Algorithms (GA)
Optimization
Heat transfer
Inverse problems
Design
Correlation
Evolutionary algorithms
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.11.015

* Corresponding author. Tel.: +1 418 656 7829; fax
E-mail address: Louis.Gosselin@gmc.ulaval.ca (L. G
This review presents when and how Genetic Algorithms (GAs) have been used over the last 15 years in
the field of heat transfer. GAs are an optimization tool based on Darwinian evolution. They have been
developed in the 1970s, but their utilization in heat transfer problems is more recent. In particular, the
last couple of years have seen a sharp increase of interest in GAs for heat transfer related optimization
problems. Three main families of heat transfer problems using GAs have been identified: (i) thermal sys-
tems design problems, (ii) inverse heat transfer problems, and (iii) development of heat transfer correla-
tions. We present here the main features of the problems addressed with GAs including the modeling,
number of variables, and GA settings. This information is useful for future use of GAs in heat transfer.
Future possibilities and accomplishments of GAs in heat transfer are also drawn.
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Fig. 1. The heat transfer related articles that used GAs reported in this review.
1. Why review GAs in heat transfer?

Genetic Algorithms (GAs) were mostly developed in the 1970s
as an optimization toolbox, though some work had already been
done in the field of evolutionary computation. In 1967, Bagley [1]
introduced the words ‘‘genetic algorithm” and published the first
application of GAs. However, the first main works related to GAs
are attributed to Holland [2] and De Jong [3], in 1975. In the
1980s, Grefenstette [4], Baker [5] and Goldberg [6] contributed to
significant advancements in GAs. Ref. [6] presents a good picture
of the state of art in 1989. A more complete history of GAs and
other evolutive computation methods is given in [7].

However, the interest in and the utilization of GAs in the field of
heat transfer is more recent. This is probably due to the fact that for
most numerical problems in which the heat transfer community is
interested in, computational times are typically long. In the GA
optimization procedure, several simulations typically need to be
performed. When, for example, the simulation of a design involves
CFD analysis, the overall computational time required for the GA to
run could be prohibitive. Nevertheless, GAs began to be used in
heat transfer approximately in the mid-1990s, timidly at first,
but more and more regularly nowadays. As noted Queipo et al.
back in 1994 [8], ‘‘the heat transfer community can expect to see
a significant increase in pioneering applications of such methodol-
ogies [GAs] to many complicated thermoscience problems admit-
ting optimization in some sense. These exciting applications are
being facilitated by the increased availability of high performance
computers, distributed computing environments and improved
guidelines for the specification of the necessary GA parameters.”
This is in fact what happened, and GAs have generated a lot of
interest in the field of heat transfer, in particular in the last couple
of years. It is time to look back over the last 15 years or so in order
to review the work accomplished with GAs in heat transfer, and
then to look forward to future challenges and possibilities.

In preparing this review, we have considered major heat trans-
fer-related journals. We have also consulted journals oriented on
the numerical modeling and optimization of engineering systems
for some articles that were clearly related to heat transfer, and
chemical engineering journals with an important computational
content. The time distribution of the reviewed publications is
shown in Fig. 1. After a modest increase of the number of papers
per year for the first decade, the number of publications on the to-
pic has grown intensely starting in 2005. Even though they have
some limitations, GAs appear as a promising and accessible alter-
native for the optimization and design of thermal systems.

The main objectives of this review could be formulated as: (i) to
summarize the work related to the field of heat transfer accom-
plished by GAs, (ii) to compare the different GAs used so far in heat
transfer, (iii) to bring out future challenges and possibilities. From
the heat transfer man/woman standpoint, GAs are a tool, not a pur-
pose in itself. Therefore, this review is not primarily concerned with
the development of GAs but rather by how and when they are utilized
in our field. For more details on GAs themselves, the reader is referred
to specialized literature on the topic (e.g., Refs. [6,9,10,11–15]).
The review is structured as follows. A general description of GAs
is provided in Section 2. Then, the reviewed articles have been
grouped in different categories related to the types of problems
that they addressed. The articles reviewed have been categorized
as follows: design problems (Section 3), inverse heat transfer (Sec-
tion 4), development of correlations and fitting (Section 5), and
other applications (Section 6). Even though the separations be-
tween each family of problems are not ‘‘sharp”, this taxonomy pro-
vides a convenient way to appreciate the many problems in which
GAs are used.

2. Brief description of GAs

The objective of this section is to present GAs briefly and intro-
duce the reader to the appropriate vocabulary. A generic GA proce-
dure will first be described, followed by a short overview of some
frequent variations that can be implemented to modify the basic
algorithm. This section will also mention other evolutive algo-
rithms analogous to GAs.

2.1. Families of GAs

Before beginning the description of the GA procedure, it is
important to distinguish between single-objective and multi-
objective GAs, since their algorithms are relatively different. The
first one aims at finding a single set of input variables that will
optimize one or many performance criterions synthesized into a
single-objective function (Section 2.1.1). The purpose of the second
type of GAs is to find many non-dominated solutions, also called
Pareto-optimal solutions, whose performances spread over the
objective functions domain (Section 2.1.2).

Another distinction has to be made between binary coding
and real floating point coding [16]. In the first case, a set of in-
put variables to optimize forms an ‘‘individual” that is repre-
sented by a binary chromosome that is then decoded into a
phenotype of the real values assumed by each input variable.
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Fig. 2. The main steps of a typical GA.
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Every genetic manipulation through the algorithm is done on the
binary chromosomes. For real coding, individuals are character-
ized only by their phenotype. In this paper, RCGA and BCGA will
stand, respectively, for Real-Coded GA and Binary-Coded GA.
Even though BCGAs were used more often in the reviewed pa-
pers, RCGAs experienced an increasing popularity, especially in
the last few years.

2.1.1. The single-objective GA procedure
A general GA procedure is summarized in Fig. 2. Each optimiza-

tion starts with a randomly generated population of individuals.
Then, entering in a loop over the generations, one needs to evaluate
the objective value (i.e., performance) of each individual, and attri-
butes a fitness ranking that will drive the selection process. The
evaluation of the objective value is typically the most time-con-
suming step of the GA procedure as it involves several simulations
(one for each individual). This explains why many authors have
used an approximation of the design space associated with their
problem rather than performing systematically simulations to
evaluate precisely the performance of each individual. Methods
such as artificial neural networks (ANN) or surface response have
shown to be useful to approximate the design space in several
problems (see, e.g., [17–21]).

Selection determines the individuals that will reproduce, with
better chances attributed to fiter individuals. Three commonly used
methods for the selection are the roulette wheel [3], the stochastic
universal sampling (SUS) strategy [5], and the binary tournament
[22]. These methods and others are described and compared in Refs.
[23,24]. After the reproduction population is determined, a cross-
over operator combines couples of parents to create offspring. For
BCGA, this operation is applied on the chromosomes, generally with
a single or a double-point crossover method. For the RCGA, the sim-
ulated binary crossover (SBX) [25] or the blend crossover operator
(BLX-a) [25] are two of the usual crossover operations performed
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on the phenotypes. A low-probability mutation operator then mod-
ifies randomly some characteristics of children produced by the
crossovers. In order to avoid regression in the performance through
the process, many authors use elitism [3], a strategy that will be dis-
cussed later. Some authors (e.g., [26–30]) also include local search at
this point of the algorithm. After verifying the stopping criterions of
the loop over generations, the offspring becomes the new initial
population and the process continues. A maximum number of
generations and/or a maximum number of generations without
improvement of the best individual generally act as stopping
criterions.

2.1.2. The multi-objective GA procedure
As stated before, the multi-objective GA procedure does not

search for a single optimal solution but rather for a set of solutions
that represent tradeoffs between many objective functions. In most
of the recent papers using this type of optimization, the specific
algorithm employed is the NSGA-II [31]. A brief description of its
major features follows. For a more complete view on multi-objec-
tive GAs, the reader is referred to Refs. [31–35]. The principles on
which the NSGA-II relies are the same as those of the single-objec-
tive optimization: combining strongest individuals to create off-
spring by crossover and mutations, and repeat this scheme over
many generations. However, the multi-objective optimization
algorithm must take into account the fact that there are many
‘‘best solutions”, which modifies the selection process. The NSGA-
II sorts the individuals based on the non-domination rank and on
the crowding distance, to ensure a high level of performance as
well as a good dispersion of the results. Elitism is ensured by per-
forming the sorting process among a combined population mixing
parents and offspring. The use of the binary crowded tournament
for selection process allows constraint handling. This algorithm
may be implemented with real-coding as well as with binary-
coding.

2.2. Selection of GA parameters

Users of GAs must choose a certain number of setting (GA
parameters). Unfortunately, the exact settings used for running
the GAs (e.g., encoding of the design [binary form or not, preci-
sion], number of individuals in the population, mutation rate,
elitist strategy and convergence criteria) are not always provided
in the reviewed publications which, in some cases, might com-
plicate the repeatability of the results or the extension of a work
to a similar problem. The choices of GA parameters have a great
influence on the speed of convergence as well as on the success
of the optimization (i.e., finding a global optimum or the optimal
Pareto front). In particular, in this review the type of representa-
tion (BCGA or RCGA), the presence or not of elitism, the size of
populations, the crossover and mutation rates and the stopping
criterion will receive a special attention, in order to point out
efficient or less efficient parameter combinations. In the re-
viewed papers, mutation rate was typically lower than 5%, but
exceptional cases considered much higher rates (e.g., [36]). We
have found great variations in terms of the number of individu-
als per population, even for similar problems. Theoretical aspects
describing the influence of these parameters will not be dis-
cussed, and GA settings will most of the time be presented as
‘‘numerical recipes”. For more extended studies on the optimiza-
tion of the GA settings, the reader is referred to Refs. [4,37].

2.3. Frequently encountered variations

2.3.1. Elitism
Elitist strategy, first introduced by De Jong [3], is frequently

implemented and is meant to eliminate regression in the perfor-
mance from one generation to the next. The most common tech-
nique used to apply elitism in single-objective algorithms
consists in introducing directly one or many of the best individuals
of the parent generation into the offspring generation. Another
technique that is employed in multi-objective algorithms is to in-
clude the parent and offspring populations in the same mating pool
in such a way that the mating population can never be weaker than
the previous one.

2.3.2. Local search
Local optimization algorithms (LOA) in GAs hold their origin in

the early 1990s [29,30]. Their purpose is clearly explained in [28]:
‘‘A local optimization algorithm (LOA) is often included in the GA in
order to overcome such disadvantages as the inability of fine local
tuning”. This operator replaces or follows the mutation operator.
Local search is achieved by changing slightly one or some charac-
teristics of promising or randomly selected individuals. However,
unlike mutation, both designs (i.e., the initial and the slightly mod-
ified one) are evaluated. Generally, only the best one is kept in the
population. Algorithms implementing this strategy in a GA are
often called hybrid genetic algorithms (HGA).

2.3.3. Niching
Niching in GAs comes directly from ecology principles and is a

general concept that can have many implications in genetic explo-
ration [6]. The main idea behind it could be summarized as fol-
lows: when two very morphologically different individuals both
perform well, we do not want to lose the specificities of each indi-
vidual by mixing their chromosomes. To avoid this, a simple and
common way of implementing niching is the following [38]: when
two individuals competing for a place in the mating pool are too
‘‘morphologically far” (their Euclidean distance of their phenotypes
is over a maximum prescribed value), the second competitor is
changed for another one and so on until the two competitors are
sufficiently similar. This reduces risks of eliminating very unique
individuals through the tournament selection. For more informa-
tion about niching, the reader is referred to Ref. [39].

2.3.4. Diversity level (DL)
The diversity level is not in itself a strategy, but a criterion that

can drive the crossover and mutation rates. It is defined as the ratio
between the best fitness and the average fitness of a population
[40–41]. Briefly, the higher is DL, the more crossovers are impor-
tant compared with mutations and vice-versa. This criterion helps
keeping a good diversity of individuals throughout the algorithm.

2.3.5. Micro GA (lGA)
Micro-GA [42] is a quick alternative to standard GA when com-

putational time is an issue. It generally uses less than 10 individu-
als per population and basically applies the same scheme as
standard GA, except that it does not use the mutation operator.
However, the fact that the population is small leads faster to local
optima. To preserve diversity, when convergence is declared, the
algorithm restarts with a new random populations, in which is in-
serted only the best individual found before. This forms a loop of
short GA procedures, until the total generation limit is reached.
This algorithm leads to a smaller number of individuals to evaluate
than standard GA and is thus faster.

2.3.6. Other evolutive algorithms
As this review concentrates on GAs, we will only mention here

some of the other evolutive strategies that appear in the papers
that will be reviewed. Differential evolution (DE), introduced by
Storn and Price [43], is a non-binary method featuring a crossover
method relying on the use of weighted differential vectors between
individuals. Its multi-objective version, the multi-objective differ-
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ential evolution (MODE), is described in [44]. Another popular
algorithm is the simulated annealing (SA) [45] which, as its name
suggests, relies on the physical phenomenon of the improvement
of properties by annealing.

2.4. Advantages and drawbacks

One of the main advantages of GAs as opposed to other opti-
mization techniques is their ease of use. Some free routines are
available on the web (e.g., [46]). Furthermore, easy-to-use com-
mercial GA toolboxes are now available, e.g., [47]. One of the
specificities of GAs is that they do not necessitate the calculation
of the objective function gradient with respect to the design
variables. This feature is particularly helpful in some cases such
as for material allocation, ordering (combinatory) problems,
multi-objective problems, MINLP (mixed integer non-linear
programming).

GAs are also recognized for their robustness. Due to their prob-
abilistic nature, the initial guess has a low incidence on the final re-
sult of the optimization. When appropriately handled, GAs will
explore a large portion of the design space, and are unlikely to con-
verge to a local optimum. GAs ‘‘search from a population and not
from a single parameter set. They are capable of searching for solu-
tions from disjointed feasible domains. They can operate on irreg-
ular functions and those that are not differentiable. They do not
require the computations of gradients” [48].

It is also interesting that after convergence is declared, the user
ends up with a population of individuals, many of which are likely
to provide alternatives to the ‘‘best” individual of the population.
GAs produce not just one optimal individual, but a population of
good individuals. From a design point-of-view, it is useful to have
available a collection of possibilities to choose from. Moreover, this
feature of GAs allows, for example, to perform a pre-optimization
to identify potentially good designs with a simplified model, and
then to evaluate more precisely with a better model a certain num-
ber of the best individuals produced by GAs [49].

Finally, GAs are easily parallelized. In fact, the objective function
of several individuals of a population could be calculated simulta-
neously on different processors.

One disadvantage of GAs is that they can be slow to converge
compared to other optimization methods that have been devel-
oped specifically for a problem. This is especially the case for lar-
ger and hard-to-solve problems such as topology optimization or
inverse problems, as we will see below (see, e.g., [50,51]). GAs
may also be less efficient and slower than traditional methods
when dealing with very simple problems, especially those for
which an analytical optimum is known. Finally, it is important
to note that several runs of a GA with the exact same settings
could potentially converge to different nearly-optimal results be-
cause of their probabilistic nature. Therefore, repeatability is not
always perfect.
Table 1
Summary of the GAs used for the design of heat exchangers.

Article Problem GA

Objective Model No. of variables Sin

[52] Min. cost Analytical 6 S
[53] Min. cost Analytical 11 S
[54] Min. cost Analytical 11 S
[55] Min. cost Analytical 7 S
[56] Min. cost Analytical 3 S
[57] Min. cost Analytical 8 S
[58] Max. heat transfer per pumping power Analytical 4 S
[17] Min. cost or weight Analytical 5 S
[59] Min. cost or volume Analytical 3 S
[48] Max. NTU per unit of pressure drop Analytical 3 S
3. Design of thermal systems

The first family of heat transfer problems addressed with GAs is
the design of thermal systems. Design is considered here with a
broad sense: shaping, sizing, placing, ordering, etc. The thermal
systems that have been considered so far in literature are many:
heat exchangers, heat and fluid flow networks, fin, porous media,
heat sinks, etc. This first family of heat transfer problems in which
GAs are used is by far the one that counts the most published
papers (98/132 = 74%).

As we will see below, the ‘‘complexity” involved in the model-
ing of these systems varies greatly, ranging from simple analytical
equations to advanced CFD. Tables 1–8 present a schematic sum-
mary of the most important features of the publications on design
problems. For each paper, the objective function(s), the level of
modeling (e.g., analytical expression, CFD, etc.), and the number
of design variables are reported in the appropriate table. Details re-
lated to the GA are also presented in the tables: single vs. multi-
objective (S/M), binary vs. real-coded (B/R), crossover rate (Pcross),
mutation rate (Pmut), number of individuals per population
(Nind), maximal number of generations (Maxgen) or other conver-
gence criterion, and the presence or absence of an elitist strategy
(Y/N).

3.1. Optimization of systems producing, transferring and converting
energy

We present in this sub-section recent work related to optimiza-
tion of systems producing, transferring, and converting energy, and
in particular, thermal energy. One common denominator of these
articles is that the modeling on which they rely is most of the times
based on algebraic equations and correlations. Nevertheless, the
number of possible designs is typically quite large, and GAs are
helpful to determine the best options.

3.1.1. Heat exchangers
Heat exchangers are an integral component of all thermal sys-

tems. Their designs should be adapted well to the applications in
which they are used; otherwise their performances will be deceiv-
ing and their costs excessive. Heat exchanger design can be a com-
plex task, and advanced optimization tools are useful to identify
the best and cheapest heat exchanger for a specific duty. GAs are
among the current options to perform such work, see Table 1.
The models used to evaluate the performance of HEs are mostly
analytical and rely on empirical relations.

Selbas et al. [52] designed shell-and-tube heat exchangers
with a standard BCGA without elitism. The objective was to min-
imize the cost, based on tube diameter, tube pitch, number of
passes, shell outer diameter and baffle cut. Wildi-Tremblay and
Gosselin [53] also used a GA to minimize the cost of shell-
and-tube heat exchangers for a specified duty. The cost included
gle/multi Bin/real Pcross Pmut Nind Maxgen Elitism

B N/A N/A N/A 100 N
B 0.7 0.04 30 300 w/out impr. Y
B 0.7 0.04 30 300 w/out impr. Y
R N/A N/A 40–100 15 N/A
B 0.5 N/A 20 100 Y
R 0.4 0.05 80 50 w/out impr. Y
R N/A 0.05 6000 30 Y
N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A 1000 N/A
R 0.7 0.01 150, 250 N/A N/A



Table 2
Summary of the GAs used for the design of heat exchanger networks (HENs), chemical plants, and design integration.

Article Problem GA

Objective Model No. of variables Single/multi Bin/real Pcross Pmut Nind Maxgen Elitism

[60] Min. cost Analytical 27 S R N/A N/A 20 100 Y
[61] Min. cost Analytical �68 S N/A N/A N/A 20 10 N/A
[62] Min. cost Analytical N/A S R 0.5 0.3 50–100 150–200 N/A
[36] Min. cost Analytical (1) 1–6 S R N/A (1) 0.4 (1) 50 (1) 57 N/A

(2) 1–17 (2) 0.1–0.8 (2) 20 (2) 8
[63] Min. required utilities Analytical N/A S R Variable Variable 100 500–1000 N/A
[64] Min. cost Analytical 7–20 S R N/A N/A N/A N/A N/A
[65] Min. cost Analytical 1600 N/A N/A N/A N/A N/A N/A N/A
[18] (1) Max. production

(2) Max. selectivity
(3) Min. toluene-benzene

use

Ordinary differential
and non-linear algebraic eqs.

Up to 13 M R 0.7 0.05 80 100 Y

[66] (1) Max. production
(2) Max. selectivity
(3) Max. yields

Ordinary differential
and non-linear algebraic eqs.

4 M R 0.9–0.7 N/A 100–150 600 N/A

[67] (1) Max. production
(2) Max. selectivity
(3) Max. yields

Ordinary differential
and non-linear algebraic eqs.

4 M B 0.5–0.7 0.002 50 100 N

[68] Max. yields of reaction Fuzzy neural network
experimental based

3 S R 0.5 0.0–0.1 120 100 N/A
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the cost of purchase and the cost of operation. Eleven design vari-
ables were considered (tube pitch, tube layout pattern, number of
tube passes, baffle spacing at the center, baffle spacing at the inlet
and outlet, baffle cut, tube-to-baffle diametrical clearance, tube
bundle outer diameter, shell diameter and tube outer diameter),
and each design was represented by a string of 24 bits. Correla-
tions were used to estimate the heat transfer coefficients and
pressure drops. The GA identified the optimal design approxi-
mately 22 times faster than the testing of all possibilities. Allen
Table 3
Summary of the GAs used for the design of heating, ventilating, air conditioning and refri

Article Problem

Objective Model No. of
variables

[69,40] Min. power required Analytical N/A
[70] (1) Min. energy consum.

(2) Min.% dissatisfied
Analytical Up to 73

[71] Min. energy consumed Analytical Max 15
[72] Min. energy consumed Analytical 9
[73] (1) Min. operating costs

(2) Min. discomfort
Analytical 200

[74] Min. err. metrics on T(t) Analytical 2
[75] Min. err. on T Analytical 2
[76] Min. cost Fuzzy logic,

experimental
based

N/A

[77] Min. err. Tset vs. Tactual Analytical 2
[41] Min. power required Analytical N/A
[78] Min. power required Analytical 4
[79] Min. energy consum. + Min. over-

dimension.
Analytical 6

[80] Min. power consum. Analytical 4
[81] Min. power consum. Analytical 4
[82] Min. power consum. Finite elements 5
[83,84] Max. COP Analytical 9
[19] Min. cost ANN experimental 4
[85] Min. cost CHEOPS tool 12

[86] Min. life-cycle cost and environmental
impact

Analytical 8

[87] Min. cost Analytical 33
[88] Min. cost Analytical 8–16
and Gosselin [54] extended this work to condenser shell-and-
tube. An additional design variable was the side (shell or tube)
where the condensing fluid flows. The designs were represented
with 27 bits. In Ref. [55], Babu and Munawar minimized the cost
of shell-and-tube heat exchangers based on the differential evolu-
tion (DE) optimization method. Seven design variables were taken
into account. Caputo et al. [56] also minimized the cost of shell-
and-tube heat exchanger, but only three design variables were in-
cluded (shell diameter, tube diameter, baffle spacing). The GA in-
gerating (HVAC&R) systems.

GA

Single/
multi

Bin/
real

Pcross Pmut Nind Maxgen Elitism

S B Var. Var. N/A N/A Y
M R 0.9 0.04 100 500 Y

S B 0.7 0.01 100 500 Y
S N/A N/A N/A N/A N/A N/A
M B N/A N/A 200 1000 N

S B 0.85 0.02 40 50 Y
S B N/A N/A 30 N/A N/A
N/A N/A N/A N/A N/A N/A N/A

S B N/A N/A 20 N/A N/A
S B Var. Var. 50 100 Y
S B 0.6 0.01 100 100 N/A
S B 0.6 0.01 100 100 N/A

S B 0.8 0.01 50 100 N/A
S N/A N/A N/A 1 500–800 N/A
S N/A N/A N/A N/A N/A N/A
S B 100% 0.01 100 50 N/A
S B 0.5 0.033 50 100 N/A
S R N/A N/A 200–

1000
N/A Y

M N/A 0.9 0.02 40 200 Y

S N/A N/A N/A N/A 4000 N/A
S R N/A 0.01–0.2 N/A 200–

1000
Y



Table 4
Summary of the GAs used for the design of power generation systems.

Article Problem GA

Objective Model No. of
variables

Single/
multi

Bin/real Pcross Pmut Nind Maxgen Elitism

[89] (1) Min. gp, gt ST
(2) Max. TSFC

Isentropic analytical model for turbojet 2 M N/A 0.8 0.02 100 and
200

N/A Y

[20] (1) Max. efficiency
(2) Min. NOx emission

ANN on experimental data 10 M N/A N/A N/A N/A 1000 N/A

[90] Max. efficiency 2-zones combustion model 6 S N/A N/A N/A N/A N/A N/A
[91] Min. cost Algebraic N/A S Integers 0.8 0.005 10 1000 Y
[92] Max. net present value Algebraic 9 S Mixed N/A N/A N/A N/A N/A
[93] (1) Min. cost

(2) Max. cash flow
Algebraic thermodynamic From 4 to 12 S N/A N/A N/A N/A N/A N/A

[94] Max efficiency Algebraic thermodynamic 6 S B 0.8–0.9 0.02–0.04 50 300 Y
[96] Min. cost Hourly annual simulation 3 M N/A 0.33 0.8 500 600 Y
[97] (1) Min. cost,

(2) Min. demand-vs-sup-
ply error,

(3) Min. gas discharge

Algebraic N/A M N/A N/A 0.04 N/A 50 Y

[98] Min. cost
Algebraic energy balance N/A S B N/A 0.04 N/A 100 Y

[99] Max. production time N/A N/A S 0.8 0.1 30 400 Y
[100] Min. cost Algebraic N/A N/A N/A N/A N/A N/A N/A N/A
[101] Min. cost Algebraic N/A N/A N/A N/A N/A N/A N/A N/A
[102] Min. cost N/A N/A N/A N/A N/A N/A N/A N/A N/A
[103] (1) Min. cost

(2) Max. exergy efficiency
N/A N/A N/A N/A N/A N/A N/A N/A N/A

[104] Max. power Algebraic energy balance 7 S B 1 0.01–0.06 10–100 100 Y
[105] Min. cost Algebraic energy balance N/A S N/A N/A N/A N/A N/A N/A
[106] Min. cost Algebraic energy balance N/A S B 0.9 0.9 5500 20 N/A
[56] Max. COP Heat exchanger energy conservation

(coupled EDO)
N/A S B 0.7 0.02 1000 20 N

[108] Max. COP Algebraic equation 3 S R N/A N/A N/A 60 N/A
[95] Min. cost of expansion Analytical 28 S B N/A 0.1–0.001 50–150 1000 N/A
[109] Max. cooling capacity Algebraic equation 3 S R 0.6 0.2 20 200 Y
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cluded 20 individuals per population, elitism, and a scattered
crossover method where a random binary vector is created hav-
ing a number of bits equal to the number of genes of an individ-
ual. Then, the genes where the value is 1 are copied from the first
parent, while the genes where the value is 0 are copied from the
second parent. A single-objective function representing the an-
nual cost (exergetic and capital costs) of a shell-and-tube heat ex-
changer was minimized in [57]. The function depends on tube
length (discrete), outer diameter of the tubes (discrete), pitch
type (discrete), pitch ratio (discrete), tube layout angle (discrete),
number of tube passes (discrete), baffle spacing ratio (discrete)
and mass flowrate of the utility (continue). A mixed discrete
and continue real value GA was used. Original features were
added to the GA such as the insertion of new randomly generated
individuals in each generation.
Table 5
Summary of the GAs used for the design of fins.

Article Problem

Objective Model

[110] Max. fin effectiveness 2D conduction
[111] Uniformize heat flux distribution 1D–2D conduction
[112] Max. heat transfer rate per unit of mass or

min. entropy generation
Correlations from numerical simu
with conduction equation

[113] Min. thermal resistance 1D–2D fin equation
[114] Max. Nusselt number or heat flux per unit

of length or surface
2D conduction for T and 2D diffusi

[115] Max. Nusselt number or heat flux per unit
of length or surface

2D conduction for T and 2D diffusi

[116] Max. Nusselt number or heat flux per unit
of length or surface

2D conduction for T and 2D diffusi

[117] Max. Nusselt number or heat flux per unit
of length or surface

2D conduction for T and 2D diffusi
The heat transfer per unit of pumping power was maximized for
a corrugated sandwich panel with an algebraic model by Valdevit
et al. [58]. The design variables were the core thickness, the web
thickness, the angle of corrugation and the order of corrugation.
The population counted 6000 individuals. An elitist strategy was
implemented. The GA was run for 30 generations. In [17], the mor-
phology of a plate fin heat exchanger was optimized based on two
objective functions that were treated separately: the weight and
the operation cost. The length, width, number of hot side layers,
fin height at hot/cold side, fin pitch at hot/cold side were the design
variables. Constraint handling was operated by a back propagation
artificial neural network (ANN) that was used to eliminate individ-
uals who violate the constraints before they were actually calcu-
lated by the GA. The training of the ANN was made with the first
GA population of 500 individuals.
GA

No. of
variables

Single/
multi

Bin/
real

Pcross Pmut Nind Maxgen Elitism

5 S R 0.2 N/A 100 N/A N
12 S B N/A N/A 99 25 N/A

lations 5 S B 0.6 0.1 50 50 N

3 S N/A N/A N/A N/A N/A N/A
on for u Up to 8 S N/A N/A N/A 20 40 N/A

on for u Up to 8 S N/A N/A N/A 20 50 N/A

on for u Up to 8 S N/A N/A N/A 20 N/A N/A

on for u Up to 4 S N/A N/A N/A 20 N/A N/A



Table 6
Summary of the GAs used for the other examples of design problems based on conduction equation.

Article Problem GA

Objective Model No. of
variables

Single/
multi

Bin/
real

Pcross Pmut Nind Maxgen Elitism

[50] Min. hot spot T 2D cond. volume-to-point method 44 S R N/A N/A N/A N/A Y
[119] Min. stress 2D cond. Element-free Galerkin

method.
8 S R Var Var 80 10gen with 0.1%

improve
Y

[120] Min. err. on T dist. 2D point heat sink method 3 S R 0.6 0.002 50 N/A Y
[121] Min. heat loss 2D cond. 4 S B 0.5 0.15 30 100 N/A
[122] Max. heat transfer 2D cond. 14 S R 1 1/14 20 200 Y
[118] Min. hot spot

temperature
2D cond. 4 S N/A 0.8 N/A 100 200 Y

Table 8
Summary of the GAs used for the design of radiation dominated system.

Article Problem GA

Objective Model No. of
variables

Single/
multi

Bin/
real

Pcross Pmut Nind Maxgen Elitism

[136] Min. residuals between desired and
estimated values of heat flux

Radiative transfer eq. with discrete
transfer method

Up to 11 S B N/A N/A N/A 100 Y

Table 7
Summary of the GAs used for the design of thermofluid systems.

Article Problem GA

Objective Model No. of
variables

Single/
multi

Bin/real Pcross Pmut Nind Maxgen Elitism

[123] Max. Nu, min. friction 2D CFD (4 eqs.) 5–11 M Discrete N/A N/A 20–50 30 Y
[124] Min. temperature 2D heat transfer 4–10 S B 0.7 0.04 30 200 w/out impr. Y
[26] Min. temperature 2D heat transfer 10 S B N/A N/A 25 250 w/out impr. Y
[27] Min. temperature 2D heat transfer 60 S B N/A 0.05 20 300 w/out impr. Y
[125] Min. temperature 2D heat transfer 2D

Darcy flow
14 S B 0.8 0.04 30 200 w/out impr. Y

[126] Max. conductance 2D CFD Up to 41 S N/A N/A N/A 100 20 with less than
1% diff.

N/A

[127] Max. global conductance 2D CFD Up to 3 S N/A N/A No 5 N/A Y
[128] Max. heat transfer min. pressure

drop
CFD 4 M Real 0.167 variable 30 20 Y

[8] Min. failure rate 2D CFD 7 S Integer 0.6 0.1 7 7 Y
[130] Min. pressure drop max. heat

transfer
CFD Approx. 20 M B 0.9 0.05 100 500 Y

[131] Max. heat transfer 2D CFD laminar 4 S N/A N/A N/A 12 N/A N/A
[112] Min. entropy generation max.

heat transfer
1D conduction in fins
1D energy balance in
fluid + correlations

5 S B 0.6 0.1 50 50 N/A

[132] Min. entropy generation 2D CFD 4 S B 0.7 0.02 100 500 N/A
[133] Max. effectiveness CFD 8 S N/A N/A N/A N/A N/A N/A
[134] Min. warpage Polynomial best fit

based on
several CFD results

3 S 16 1 0.1 50 500 N/A

[135] Max. heat transfer max. flow rate 2D CFD 6 M N/A N/A N/A 15 30 N/A
[59] Min. cost min. volume Correlations 3 S B 0.5 0.005 50 1000 Y
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In [59], based on correlations for heat exchange and pressure
drop, Xie et al. optimized a plate fin compact heat exchanger.
The objective was to minimize either the cost or the volume under
constraints (maximal allowable pressure drop and minimum effi-
ciency requirement). Three shape parameters of the heat exchang-
ers were varied for 1000 generations. The NTU per unit of pressure
drop of a direct-transfer type intercooler and a direct-transfer type
regenerator was maximized by a real-coded GA, based on correla-
tions in [48]. Three design variables (x, y, z dimensions) were pres-
ent. For the first case considered, the size of the population was
150, the crossover and mutation probabilities were 70% and 1%,
and the tournament probability and scale for mutation were also
70% and 1%. For the second case, the population was larger (250).

3.1.2. Heat exchanger networks (HENs), chemical plants, and design
integration

In addition to the detailed design of the heat exchangers them-
selves as described in Section 3.1.1, genetic algorithms have been
considered for designing heat exchanger networks (HENs) and
facilitate heat integration in many applications (Table 2). Typical
objectives of these design problems are to maximize the energy
recovery or to minimize the cost of the design.
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Pettersson and Soderman [60] designed a heat recovery system
that minimizes the total cost, which is a function of the heat ex-
changer areas, number of heat exchangers, and cold and hot utility
costs. The design variables were the existence/non-existence of
fluid matches (binary variables) and the area of the heat exchang-
ers. Roulette wheel selection was considered for the selection, and
a two-point crossover operator was considered. When designing
retrofit large HENs, GAs can help separating a large system into
smaller subsystems, as in Ref. [61]. For a fixed hot/cold fluid net-
work topology, [62] minimized the cost of structural change (first
step), and the cost of exchangers parameters changes (second step)
with a GA. In the first step, 100 individuals formed the population,
and evolved for 200 generations. In the second step, 50 individuals
evolved for 150 generations. The authors reported computational
times between 2 and 12 h. Two steps of the HEN optimization re-
lied on GAs in Ref. [36]: (i) the optimization of DTmin was per-
formed to minimize the cost of capital and energy, and (ii) the
optimization of the network was achieved by minimizing the total
cost for a certain value of DTmin. Mutation rate was variable, but
generally very high (up to 80% in some cases). In [63], the HEN
was optimized to minimize the additional utilities required to
reach a fixed performance criterion. The morphology of the net-
work for five heat exchanger layers was optimized by a binary
GA. The mutation rate was large (10%) during the first 500 gener-
ations and smaller (1%) afterwards. Ma et al. [64] minimized the
total exergetic and capital cost (based on heat transfer surface) of
a multi-period heat exchanger network with a real value GA. The
positioning of the heat exchangers in the networks and the tem-
perature difference were the design variables. Design integration
of multi-period process system was performed in [65] by minimiz-
ing operating and capital annualized costs with a GA.

In addition to heat exchanger networks, many authors opti-
mized chemical reactors and plants. For example, optimization of
styrene reactor and process with MODE, NSGA and NSGA-II is ad-
dressed in Refs. [18,66,67]. Three objectives were pursued simulta-
neously: maximize productivity, selectivity and either maximize
yields or minimize heat duty. In [66], a multi-objective differential
evolution (MODE) approach was compared to the binary niching
adapted NSGA proposed in [67] to solve the same problem and
converged to a better Pareto front. Tarafder et al. [18] used real-
coded NSGA-II with simulated binary crossover (SBX) and success-
fully obtained the optimal Pareto front. Ref. [68] optimized the
feedstock composition and operating conditions for a secondary
reaction of FCC gasoline. Experimental data were fed to a neural
network with fuzzy logic to evaluate the yields of the reaction.
The GA used was real-coded, with Nind = 120, Pcross = 50%,
Pmut = 0–10%. A maximum of 100 generations were calculated.

3.1.3. Heating, ventilating, air conditioning and refrigerating
(HVAC&R) systems

The main issue addressed so far with GAs for HVAC and refrig-
eration systems is concerned with the design of the system itself,
or with the control of the systems for minimizing cost, minimizing
energy consumption and maximizing comfort. The evaluation of
the system performances is based mainly on algebraic equations.
This body of work is abundant and still growing, see Table 3.

For example, Lu et al. considered a GA to minimize the total
power required for an HVAC system [40,69]. Several design vari-
ables were taken into account: number of operating chillers, num-
ber of operating chilled water pumps, number of operating cooling
coils, number of conditioned rooms, number of operating con-
denser water pumps, number of operating cooling tower fans, tem-
perature of chilled water supply, temperature of condenser water
supply, air flow rate of supply air through kth cooling coil to lth
room, and condenser water flow rate provided by mth pump. Sim-
ulations were performed with 60 rooms, 15 cooling coils, 3 water
pumps, 3 chillers, 3 condensed water pumps, and 3 cooling towers.
The optimal sequencing on a 24 h test period resulted in a
800 kWh save compared with traditional control methods. Optimal
pressure set points of pumps were found by an adaptive neural
fuzzy inference system (ANFIS) and the calculation of the objective
function was made by an analytical model. To ensure diversity, the
probability of crossovers and mutations were functions of the
diversity level (DL), which is the ratio between the best fitness
and the average fitness of a population. In [41], the power con-
sumption of chillers, pumps and fans in an HVAC system was also
minimized by a binary elitist GA. The objective values were calcu-
lated from an adaptive neuro-fuzzy inference system (ANFIS). The
design variables were the number of chillers, of water pumps and
of fans, the temperature of the chilled water supply, and the air-
flow rate of supply to the kth cooling coil in the ith room. The
crossover and mutation probability were defined by the diversity
level (DL).

Predicted percentage of dissatisfaction (comfort zone) and en-
ergy consumption were minimized simultaneously by a GA in
the real-time computation of the setting of an HVAC system in
[70]. The optimal parameters that were determined by the GA
were the duct static pressure set point, the supply air temperature
set point, the chiller water temperature, the N zones temperature
set points, and the required reheat. NSGA-II was used with real-
coding. The population size was 100. In Ref. [71], the power con-
sumed by the machinery of an HVAC system (i.e., pumps, chillers
and cooling towers) has been minimized. The GA determined
which of many HVAC systems put in parallel were in use with a
binary variable (yes/no) associated with each component. Water
and air flows were also optimized with a precision of 8 bits each.
One hundred individuals evolved for a fixed number of generations
(500). In [72], the on-line control of outdoor air (outdoor air ratio,
voltage of reheaters) for air conditioning system has been opti-
mized with a GA to minimize the energy consumed.

A multi-objective GA was put to use by Wright et al. for building
optimization by a three-day hour-by-hour simulation [73]. The
objectives were to minimize the operating cost and the thermal
discomfort. Constraints were handled by introducing the infeasi-
bility criterion (global constraints violation measure) as a third
objective. The design variables were: on/off status for 15 h/day
(unoccupied period), supply air flow rate and temperature for each
hour, coil width, coil height, number of rows and water circuits in
each of the two coils, water flow rate, fan diameter and heat recov-
ery device size, which totalized 200 design variables over the 3
days. 200 individuals evolved for 1000 generations.

The optimal control of HVAC systems with the help of GAs has
been addressed in Refs. [74–75]. Huang and Lam [74] optimized
the proportional and integral parameters of a PID controller for
regulation of an HVAC system. A single-objective function combin-
ing overshoot measure, settling time and mean square error was
employed. A standard elitist BCGA was considered with a popula-
tion of 40 individuals and a maximal number of generations of 50.
Each controller design was represented by a string of 16 bits. In
[75], authors designed a PID controller for a variable air volume
(VAV) AC system. Two controller parameters were chosen by the
GA to minimize the error between commanded and measured tem-
perature in a test-room. A GA determined the fuzzy logic parame-
ters for a self-adapting building to minimize energy consumption
regarding occupancy in [76]. The control of a supply air tempera-
ture with variable air volume systems was assured by a BCGA in
[77]. This was achieved by minimizing the difference between a
set-point for the air temperature and the actual temperature.
Two control parameters totalizing 20 bits were determined by
the GA. Convergence was declared when the average performance
of the population was similar to the performance of the best indi-
vidual of the population.
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The part load ratios of 4 chillers have been determined by a BCGA
in [78] to minimize the power consumption. A penalty was added
when the cooling capacity was not reached. The population was
made of 100 individuals, each of 40 bits. The roulette method was
used for the selection. The part load ratio of each of the 6 chillers of
a system has been optimized by a GA in [79]. The objective was to
minimize the energy consumption for fixed cooling loads and mini-
mize the discrepancy between needed and produced cooling (i.e.,
minimize over-dimensioning). One hundred binary-coded individu-
als evolved for 100 generations. The mutation rate was 1%. Chang
[80] found up to 4 chilled water supply temperatures of chillers
when solving the chiller loading problem (minimum power con-
sumption) with a GA. Ten bits per temperature were used. The pop-
ulation size was 50 and the number of generations was fixed to 100,
with crossover and mutation probabilities of 80% and 1%. The author
notes that ‘‘after analysis and comparison of the case study, it has
been concluded that [the GA] not only solves the problem of
Lagrangian method, but also produces results with high accuracy
within a rapid timeframe.” This chiller loading problem had been ad-
dressed before with an evolutionary strategy (ES) in which a single
design evolved thanks to mutations [81]. When the mutation was
beneficial, the new design would replace the previous one (random
search). Refs. [80,81] showed very similar results about the accuracy
of both evolutional methods and on the computational power sav-
ings realized when using it instead of the Lagrangian method. Thus
no sensible differences in the optimization results between ES and
GA can be reported in this case. A GA found up to 5 control parame-
ters of a heat dissipater crossed by air [82]. Important fan power con-
sumption reductions were achieved thanks to the optimization of
the control system. In [83–84], multistage cooling cycles have
been designed with a binary GA with imposed temperatures
and heat removing rates. The objective was to maximize the
multistage effectiveness (COP of multistage/COP if many single
stage cycles). The physical configuration of the system (8 bits),
the pressure range of the system (10 bits) and the split ratios
(20 bits) were the design variables. One hundred individuals
constituted the population. To build the mating pool, the fitness
value of each individual has been normalized by the average
population fitness. A random number between 0 and 1 was
added to this normalized fitness and the result gives the number
of copies of each individual in the mating pool. The pool filled
up until it reached the population size. Uniform, single and dou-
ble crossovers were performed. The mutation rate was 1%. [19]
optimized direct-fired absorption chillers. The operation cost
(costs for chillers, pumps and fuel) was minimized under differ-
ent cooling loads by varying the chilled and cooling water mass
flow rate, the chilled water supply temperature, and the cooling
water return temperature. The GA used was a standard BCGA
with Nind = 50, Pcross = 50, Pmut = 0.033 and Maxgen = 100. An
artificial neural network trained with 2100 sets of experimental
data was used to evaluate the individuals.

Two different problems of optimization of building parameters
(geometry of the building, composition of walls and floors, and so-
lar protection) regarding heating and cooling loads were addressed
separately by Znouda et al. [85]: minimize the power consumption
and minimize the cost. The GA used a standard elitist strategy with
real coding. Wang et al. [86] proposed a green building design
method based on a multi-objective GA. The building design param-
eters considered were the building orientation, the building aspect
ratio, the type of windows, the window-to-wall ratio, the wall type,
the wall materials, the roof type and the roof materials. The two
objectives considered were the life-cycle cost and the life-cycle
environmental impact.

Curti et al. [87] used an analytical model to represent a district
heating network. A GA minimized the total cost of the network by
adjusting 33 design variables related mainly to the operating tem-
peratures and mass flow rates, but few information about the GA
was available. Chan et al. [88] optimized with a RCGA a pipe net-
work to minimize the pumping power and installation cost (com-
bined into a global cost) of a district heating network. The network
was characterized by the link between the stations, which were be-
tween 9 and 17. The GA was hybridized with local search. Forty
percent of the generated individuals of a population came from
crossovers, the other 60% being mutated individuals of the previ-
ous generation.

3.1.4. Power generation
The generation of power is another body of work that is very

abundant, and in which GAs can play a significant work to maxi-
mize performance and minimize cost (Table 4). The topics covered
include engines, fuel cells, PVs, hydro-thermal plants, combustion,
etc. In particular, complex power generation systems including
several components and several energy sources have proved to
benefit from GAs to achieve good tradeoffs between competing
objectives.

For example, a multi-objective GA was considered to optimize
a subsonic turbojet engine based on an analytical model in [89].
The thermal efficiency, the propulsive efficiency, the thrust-spe-
cific fuel consumption and the specific thrust were the four
objectives. Up to three design variables were chosen by the
GA: input flight Mach number, compressor pressure ratio and
turbine inlet temperature. A population size of 200 has been
chosen with crossover probability and mutation probability of
0.8 and 0.02, respectively. A coal burner is designed with a GA
in [20] to maximize efficiency and minimize NOx emission. These
objectives were calculated from an artificial neural network
(ANN) trained with experimental results. A comparison study be-
tween GA, artificial neural networks and fuzzy logic is proposed
in [90], in order to maximize the efficiency of an engine, under
emission constraints. The design variables were the equivalence
ratio, the charge pressure, the charge temperature, the combus-
tion duration, the combustion start and the form factor. The ANN
proved to perform better than the GA, but no information on the
GA was given.

The overall cost (investment and operation costs) of a power
plant expansion was minimized by Sirikum and Techanitisawad
[91], under power and environmental constraints. The GA deter-
mined the year of implementation of each energy generating unit.
The population was composed of 10 individuals, which evolved for
1000 generations. The phenotypes were integers. [92] maximized
the value (based on economic, thermal efficiency and emissions)
of a cooling, heating and power generation system. The variables
considered included the gas turbine series and number, the gas en-
gine series and number, the gas turbine side hot water mass flow
share, the gas turbine side cold water mass flow share, the hot
water supply temperature, the pinch floor cooling device and the
cold water supply temperature. This work was performed with a
GA with mixed integer and real value coding. Ref. [93] optimized
gas turbine power plants for single, dual and triple pressure with
and without reheating. Two objectives were addressed separately,
i.e., minimize the energy generation cost and maximize the cash-
flow. Pressures and temperatures in the cycles were varied by
the GAs. In [94], the internal efficiency of a steam turbine has been
maximized by a BCGA. Velocity and angle of flow on different parts
of the turbine were the design variables. The GA included 50 indi-
viduals per population, with probability of crossover and mutation,
respectively, between 80% and 90%, and 2% and 4%. In [95], a stan-
dard GA and a variant in which mutations are replaced by simu-
lated annealing (ASAGA) were compared for the expansion
planning problem. ASAGA converged faster and provided a 3% low-
er cost than the standard GA. Different combinations of population
size, mutation rate, and crossover approaches were studied.
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A GA (NSGA-II) optimized a photovoltaic (PV) – wind hybrid
system in [96]. Three objectives have been considered simulta-
neously: the total system cost, the autonomy level and the wasted
energy rate. Hour-per-hour simulations with weather data were
performed to evaluate these objectives. The GA determined the
PV array peak power, the wind generator rated power and the
rated capacitors of the battery. Ranking based on domination rank
and crowding distance, and tournament selection were exploited
by the GA. A BCGA optimized the operation of an energy system
that uses in combination a solar power module, proton-exchange
membrane fuel cell cogeneration (PEMFC-CGS) with methanol
steam reforming, a geo-thermal heat pump, heat storage and bat-
tery, commercial power, and a kerosene boiler in [97]. Three objec-
tives (minimization of operation cost; minimization of the error of
demand-and-supply balance; and minimization of the amount of
greenhouse gas discharge) were grouped into a single weighted
objective function. The GA obtained the electric power output, heat
output, power and heat to be stored at each time step and for each
piece of equipment. The population evolved for 50 generations,
with elitism, and a mutation rate of 4%. In [98], a BCGA was used
for optimizing operation and planning of multi-device energy sup-
plier. The objective was to minimize the operation cost.

Oldenburg et al. [99] optimized the schedule process assigna-
tion of multi-production plants with a BCGA, in order to minimize
the energy cost. The GA had to decide to which reactor each pro-
cess went, and the schedule of the processes. Each population
was made of 30 individuals. The crossover probability was 0.8
and a two-point crossover was implemented. The mutation rate
was 10%. The scheduling of hydro-thermal power generation to
minimize production cost has been performed by different optimi-
zation methods (i.e., Swarm Optimization (PSO) and cultural algo-
rithm (CA)), including GAs, in Refs. [100,101]. Ref. [102] reviews a
cogeneration plant optimization realized with GAs which resulted
in annual savings of 0.3 M$. A general procedure based on an ex-
tended hybridized GA called the innovative multi-objective opti-
mization (IMOO) is developed in [103] to solve multi-objective
(such as maximizing the exergy efficiency and minimizing the
operation cost) optimization problems of large scale industrial pro-
duction systems. In the cogeneration industrial process presented
as an illustrative example, the design variables were the compres-
sor pressure ratio, compressor isentropic efficiency, the gas expan-
der isentropic efficiency and the temperature at two different
points of the thermodynamic cycle. To avoid the emergence of
superdominant individuals or local optimum, non-dominated indi-
viduals (elits) of each parent population were removed and archived
in a bounded-size database. To control the size of this archive, the
selection was made by a crowded method, which ensured diversity
among archived elits. Then, the mating pool was constituted from
the elit-free parent population and the selected archived elits. So,
there could not be double representation of a dominant design be-
cause it was eliminated by the crowded selection operator of the
archive. A standard binary GA maximized the total electrical power
generated in a cogeneration system with steam boilers and steam
turbine generators [104]. Steam flow rates in 7 points of the net-
work were optimized.

Obara minimized the installation and operation cost of fuel cell
energy supplier [105]. The GA found the fuel cell position, reformer
position, hot water piping path and gas production of reformer. The
model included mass and energy balances. In [106], fuel cell equip-
ment characteristics were determined by a BCGA in order to min-
imize cost. To assess the performance of the fuel cell, energy and
mass balance for the fuel cell, gas pipes and electric line network
were solved. The population of designs evolved for only 20
generations.

In [107], the thermoelectric cooler performance was also maxi-
mized, but with a non-elitist BCGA. The electric current and cur-
rent distribution were varied. The population was large (1000).
The crossover and mutation rates were 70% and 2%, respectively.
Authors also used simulated annealing (SA) and obtained similar
results, but in a shorter computation time and with less effort.
Some years later, thermoelectric coolers (TEC) were optimized by
RCGAs in Refs. [108,109]. The objective in each case was to maxi-
mize the cooling capacity (COP). In [108], the design variables were
the leg length, the leg area and the number of legs, while in [109],
the thermoelectric cooler considered was two-stage, and therefore,
the design variables were the electrical current applied to colder
TEC, the electrical current applied to hotter TEC, and the ratio of
thermocouples between the two stages. Arithmetic crossovers
were used by the GA.

3.2. Conduction heat transfer systems

In this section, we present a series of articles in which conduc-
tion-dominated heat transfer systems are optimized, and for which
the modeling involves solving a diffusion equation. For example,
the shape of fins can be optimized by GAs and topological optimi-
zation can be achieved by GAs to produce conduction pathways in
a system. Compared to Section 3.1, the modeling of these systems
is thus considered more ‘‘heavy” to some extent because every
objective function evaluation requires solving a differential equa-
tion on the domain of interest.

3.2.1. Design of fins
Fins are used to increase the heat transfer surface area in vari-

ous systems. The design of fins is an important problem in heat
transfer and thus, has attracted a lot of attention, see Table 5. Many
fin shapes are available (e.g., pin fins, annular fins and straight
fins), and practical constraints should be considered in the design
(e.g., cost, mass and manufacturability). In the last years, several
authors have been using GAs to optimize fin shapes.

A 2D fin equation is solved by Fabbri in [110]. The objective is to
maximize with a GA the effectiveness by varying the fin shape
which is characterized by the thickness at n + 1 points (n took val-
ues up to 5). A constraint on the maximal and minimal thickness
allowable was introduced.

The optimal fin shape that ensured a uniform longitudinal heat
flux was computed in [111]. With a 1D fin model, the design vari-
ables were the radii of the circular cross-sections along the center-
line. Up to 10 positions (i.e., 10 radii values) were optimized. In 2D,
B-spline were used to parameter the fin shape. The ordinates of the
poles (up to 12) were the design variables. The bounds of the de-
sign variables were continuously reduced as the generations went
by, which was found to accelerate convergence. Ninty-nine indi-
viduals evolved for 25 generations.

A system of fins has been optimized in [112]. A 1D fin was used
for each trapezoidal fin attached to a tube. The authors developed
correlations which were used by the GA to estimate the perfor-
mance, rather than calculating it explicitly with the model. The fig-
ure of merit was the heat transfer rate per unit of mass (to
maximize) or the entropy generation rate (to minimize). Duct
spacing, duct length, fin height, fin thickness and number of fins
were the design variables. Each design was represented by a string
of 32 bits.

The design of a stacking of micro-channel has been addressed in
[113]. The GA minimized the overall thermal resistance for differ-
ent pumping power. 1D or 2D fin equations were solved to evalu-
ate the objective function. The parameters determined by the GA
were the fin thickness, channel width and channel height.

Fabbri maximized the Nusselt number of internally finned
tubes [114]. 2D laminar fully developed flow and temperature
were solved with imposed heat flux at the outside wall. The design
parameters were the wall thickness, the polynomial function
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coefficients of the fin, and the center solid circle radius. The num-
ber of fins, solid–fluid thermal conductivity ratio, pressure drop
and polynomial order (fin shape) were imposed. Several optimal
shapes have been generated depending on these parameters. Sim-
ilarly in [115], Fabbri maximized the heat transfer per unit of tube
length or surface for a given weight and for a given hydraulic resis-
tance. If after reproduction, the fin was too thin or too thick, the
shape parameters had to be resized. The genetic algorithm was
stopped after 50 generations because improvement was no longer
observed. The approach was also extended to rectangular channels
with symmetrical fins [116] and asymmetrical fins [117]. Fabbri
noted a 95% increment of the optimized finned tube performance
compared to simpler fins.

3.2.2. Other examples of designing problems based on conduction
equation

Other examples of designing with GAs for conduction dominated
problems are listed in Table 6. In order to cool a 2D body, a volume-
to-point high conductive pathways in contact with a cold patch on
the periphery has been designed in Ref. [50]. The objective was to
minimize the hot spot temperature. Each chromosome was a vector
of the highly conductive cells (not binary) and the maximal number
of components (i.e., highly conductive cells) was 44. Other optimiza-
tion approaches, simulated annealing (SA) and bionic optimization
(BO), were used and compared to GAs. All approaches yielded similar
results, although GA was slower to converge. Pedro et al. [118] de-
signed a dendritic architecture with a GA for minimal hot spot tem-
perature. The design variables were the bifurcation angle, the length
of the first branch, the thickness of the first branch, and the reduction
ratio between successive branches.

Goupee and Vel [119] optimized the fraction of composite
material in 8 volume elements. 2D conduction equation was solved
with the thermoelasticity problem to determine constraints. The
RCGA minimized the residual stress under thermal and mass con-
straints or minimized mass under thermal and stress constraints.
The GA used a tournament based selection. This allowed for the
constraints not to be considered as penalty to the objective be-
cause the tournament selection always selects individuals that re-
spect constraints over those who do not. Niching adaptation [38]
has been considered to prevent the GA to fall into a local minimum
by limiting the elimination of very unique and different individuals
through the tournament selection process.

The shape of cooling channels to achieve a fixed temperature on
the edge of a domain considering a gas temperature distribution at
the boundary was designed with a GA in [120]. The GA minimized
the error between given and computed temperature at the edge of
the surface, and therefore, a 2D conduction equation with the point
heat sink method was solved for each design tested. The two coor-
dinates and the strength of each heat sink were the design vari-
ables. Different settings of the GA were studied, but the
following was retained: crossover rate of 0.6, population of 50,
and mutation rate of 0.2%. For example, a population of 10 individ-
uals trapped the GA into local a minimum, inducing premature
convergence.

Ref. [121] found the optimal design of a plastic window frame
with air chambers and steel stiffeners with a BCGA, resulting in
heat loss reduction of up to 30%. The objective function has been
defined as minimum heat loss subject to a constraint of pre-
scribed stiffness and weight of the steel insert. The heat loss is
calculated with a 2D conduction equation. Contractions/expan-
sions/translations of the air cavities, and deformations of the
steel insert were to optimize, and were parameterized via the
coordinates of control points. Different settings of the GA were
investigated. The ones leading to the fastest convergence were:
30 individuals per population, mutation probability of 15%, prob-
ability of crossover of 50%.
The shape of a heat dissipater was designed by a GA in [122]
either to maximize the heat transfer under total surface constraint
or to minimize the heat transfer surface under constraints of tem-
perature and stress. The authors solved a coupled conduction–radi-
ation–elasticity problem using a boundary element procedure. The
RCGA used 20 individuals of 14 genes each. The efficiency of three
types of mutations (i – uniform: equal chance for a gene to take
any value, ii – boundary: the gene receives a limit value;
iii – Gaussian: probability distribution) and three types of cross-
overs (i – simple: gene interchanging; ii – arithmetical: interpola-
tion between parents’ gene; iii – heuristic: extrapolation following
trends) was tested by realizing several parameter combinations.
The best convergence was achieved with the Gaussian mutation
and the simple crossover. The selection of the individuals inserted
in the mating pool was based on a weighting value that took into
count the fitness value and a selection pressure parameter. This
parameter somehow controlled the best/average ratio of the
weighting values attributed to each individual. ‘‘The selection pres-
sure is the degree to which the better individuals are favored: the
higher the selection pressure, the more the better individuals are
favored” [122]. A cloning strategy also introduced elitism.

3.3. Design of thermofluid systems

Traditionally designing thermofluid systems with CFD is
accomplished by performing an analysis over a very limited
number of designs due to the high computational costs. With
the constant improvement of computational resources, though,
it is now possible to design thermofluid systems in a more effi-
cient and rigorous way, for example with GAs (Table 7). As
noted by Nobile et al., ‘‘there are no fundamental reasons, apart
from computational costs and modeling accuracy issues, which
prevent the application of the methodology [i.e., GAs] to more
complex geometries, and more complex physics, such as, for
example, three-dimensional channels, and unsteady or turbulent
flow regimes” [123]. Nevertheless, so far most of the work rely-
ing on GAs for thermofluid optimization has been limited to sim-
ple geometries (e.g., channels) and models (e.g., 2D laminar and
steady-state flow). Certainly we can expect to see more applica-
tions of GAs for the optimization of complex thermofluid sys-
tems in a near future.

Wildi-Tremblay and Gosselin [124] optimized a stacking of por-
ous layers used as a heat sink. The flow was parallel to the heat-
generating plate. Porosity and material composition in each layer
were the design variables. The use of the GA was interesting for
material selection. The hot spot was minimized and cost and mass
constraints were considered via a penalty on the objective function
when the constraints were violated. A 2D temperature equation
was solved to determine the hot spot temperature of a design,
and the velocity profile was known based on algebraic expression.
The GA was also able to remove outer layers when they were use-
less. A similar problem, but in natural convection, was proposed by
Villemure et al. [26]. In that case, the velocity profile was calcu-
lated with an iterative procedure. Some neighbouring designs
(i.e., designs with small variations compared to an initial design)
were generated and evaluated after crossovers (local search) to en-
hance repeatability and precision. Leblond and Gosselin [27]
implemented a two temperature model (fluid and solid tempera-
tures) to relax the local thermal equilibrium assumption of Refs.
[26,124]. This new model allowed optimizing the pore diameter
in each layer, in addition to the porosity and material. Local search
was also considered. More recently, Tye-Gingras and Gosselin
[125] developed a procedure to design a porous medium heat sink
with the flow impinging on the hot surface (rather than parallel to
the surface). Furthermore, a fin and a deflector were added. The GA
optimized 14 design variables (porosity and material in 4 layers,
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fin height, fin thickness, fin material, deflector height, deflector
length and heat sink aspect ratio).

Back in 1994, Queipo et al. [8] ordered eight different discrete
heat-generating elements in a channel to minimize failure rate
(which depends on the temperature of the heaters). 2D CFD with
a relatively coarse mesh was considered to estimate the tempera-
ture. The design was characterized solely by the way in which the 8
patches were placed on the channel wall (order). The GA converged
11 times faster than random search. Only 7 individuals per popu-
lations evolved for few generations with elitism. da Silva and Goss-
elin maximized the thermal conductance of a channel with discrete
heaters [126]. A 2D CFD model with laminar flow was used to eval-
uate the objective function. Up to 20 heater positions and heater
strengths, as well as the channel breadth, were optimized (41 de-
sign variables) with a GA counting 100 individuals per population.
The GA allowed increasing the number of design variables signifi-
cantly compared to previous works that considered only few heat-
ers. Ref. [127] also maximized the global conductance, but for a
cavity, by positioning heat patches on its wall. Again, a 2D CFD
model was used. Up to three design variables (e.g., patch positions)
were considered. Due to high computational cost, a micro-GA algo-
rithm with five individuals per population was used. Only 2% of the
total number of possible designs were simulated by the GA.

The design of the shape of the tubes in a tube bank was the pur-
pose of Ref. [128]. A 2D laminar flow was assumed, and two objec-
tives were considered simultaneously, i.e., minimize the
temperature and the pressure drop between the inlet and outlet.
The Pareto front was determined. The optimization with the GA in-
cluded four shape parameters. Thirty individuals per population
and a mutation rate of 1% were considered.

In 1996, Schmit et al. [129] studied a compact high intensity
cooler (CHIC). The design was optimized by a binary GA either
for minimizing thermal resistance, pressure drop or a function
combining both. Ten design variables were considered: number
of slots per plate, number of holes per slot in x-direction, and in
y-direction, number of orifice plates or fins between inlet and out-
let, orifice plate thickness, space thickness, target spacer thickness,
target cover thickness, hole diameter, and finally ratio of slot width
to width conduction bus bar. The GA generated a better design
than that reported in literature, based on ‘‘empirical designing”.

Nobile et al. [123] optimized a periodic channel with a multi-
objective GA (MOGA-II). The flow was assumed to be fully devel-
oped, laminar and in a steady-state. The geometry of the channel
was parametrized by means of non-uniform rational B-spline
(NURBS) and their control points represented the design variables
(up to 9 points). The Nusselt number was maximized and the fric-
tion factor was minimized. Directional crossovers were used. The
population was made of 50 individuals.

A micro-heat exchanger has been designed in [130] with a mul-
ti-objective GA. The objectives were to minimize the pressure drop
and maximize the heat transfer. Ten design variables (with 20 bits
each) represented the separator shape. Each population was made
of 100 individuals. Laminar, 2D, steady-state flow was assumed,
and the objectives were evaluated with a CFD code.

The heat transfer was maximized by optimizing a wall corruga-
tion profile under fixed pressure drop and volume of corrugated
wall in Ref. [131]. Four points for the shape of the wall have been
determined by the GA. Increment of up to 30% was achieved by the
GA compared to a flat wall channel. During reproduction, random
errors uniformly distributed between �10% and +10% of the
parameter values were introduced to enhance the exploration of
the design space. The number of individuals was set to 12.

Following [112], [132] considered a horizontal channel with
vertical and rectangular fins mounted on the outside of the chan-
nel. They performed 130 2D CFD simulations to establish correla-
tions that were later used by a standard GA to minimize the total
entropy generation rate or maximize the Nusselt number. Four de-
sign parameters were considered (channel length, channel spacing,
fin height and number of fins).

In order to reduce the computational time, [133] recently con-
sidered an artificial neuron network (ANN) to approximate the
objective function. A series of CFD simulations were performed
to calculate the heat transfer efficiency of an air-to-water heat ex-
changer with the following eight design variables: length of air
channel, height of water channel, width of air channel, height of
air channel, width between air channels, thickness of wall that sep-
arates the water and air channels, width of water channel, and
capacity ratio. Once the simulations have been performed and
the ANN has been trained, the optimization with the GA proved
to be very fast (�5 min) because the GA used the approximation
of the objective function as provided by the ANN rather than hav-
ing to perform a CFD simulation.

In [134], a BCGA was used to minimize the warpage of a thin
shell plastic part. A series of numerical simulations (pressure, flow
and temperature were solved) were performed for various x, y and
z dimensions (i.e., the three design variables) to calculate the war-
page. Then, a response surface methodology was used to approxi-
mate the design space. The GA used that approximation to
optimize the design with 16 bits per design variable, and 50 indi-
viduals per population. The mutation rate was 10%. The GA re-
duced the warpage of the initial design by 40%.

The design of a chimney with a ribbed isothermally heated wall
on one side and a smooth adiabatic wall on the other side has been
performed in [135]. A design of experiments with 6 variables and
200 simulations was performed with a CFD commercial solver.
Then a response surface modeling (RSM) was used to approximate
the design space. The multi-objective GA maximized the channel
averaged heat transfer coefficient and mass flow rate by adjusting
six variables characterizing the ribbed channel geometry. The GA
included 15 individuals per population that evolved for only 30
generations. However, after the GA was stopped, the simplex algo-
rithm was applied to finesse the designs.

GAs were combined with CFD to optimize indoor environment
(PMV human model method) in a two-step procedure [49]. First,
coarse meshes were used and simplifying assumptions were in-
voked to perform optimization for indentifying the most promising
designs. The BCGA varied the office configuration, the location of the
cooling panel and of the supply inlet, the radiative panel type, the
surface temperature of the panel and the width of the supply inlet.
Secondly, finer mesh and refined modeling was considered for eval-
uating better the 11 best individuals identified in the first step with
the GA.

3.4. Radiation

The modeling and design of systems dominated by radiation
can be a complex task. In particular, in the presence of partici-
pating media and with a coupling with convection or conduc-
tion, the models to evaluate the performance of a design
become quite heavy. Therefore, only a very limited number of
works with GAs have been found (Table 8). Designing the shape
of a 2D radiative enclosure was the topic of [136]. The objective
was to minimize the difference between desired and estimated
heat flux profile over the designed surface. The radiative transfer
equation with discrete transfer method was used to determine
the error. An elitist BCGA varied the enclosure shape which
was parameterized with rational B-spline curves. The two coor-
dinates of the position of 6 control points (i.e., 12 design
variables) were established by the GA. Then, the weights in the
B-spline expression for fixed control points were optimized. This
design problem could actually be seen as an inverse problem,
which is the object of the next section.
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4. Inverse heat transfer

The second class of heat transfer problems that have been using
GAs is constituted by inverse heat transfer problems. Fifteen per-
cent (20/132) of the reviewed articles fell into that category. In-
verse heat transfer typically aims at determining material
properties (e.g., thermal conductivity, heat capacity and specific
extinction coefficient) or boundary conditions (e.g., heat transfer
coefficient, heat flux and emissivity) based on measured values
of temperature and/or heat flux in a system [137]. Such problems
could be formulated as optimization problems. The objective is
to minimize the error between measured values (e.g., temperature)
and predicted values based on the estimated properties/BCs. In-
verse problems are known to be ill-posed, i.e., that existence,
uniqueness and stability of the solution are not satisfied under
small changes of the input data (measurements).

Different optimization techniques have been used in the past to
minimize the error between the measured and predicted data. GAs
have also been used to perform the error minimization task in sev-
eral heat transfer systems. Successes were achieved even though
long computational times are often reported. In these problems,
the equivalent to the design variables that were optimized by GAs
in Section 3 are the properties/boundary conditions themselves.
The GA will make an initial population of properties/BCs evolve in or-
der to find those leading to the results as close as possible to the mea-
surements. So far, only relatively simple systems have been solved
with GAs, mainly in conduction and radiation heat transfer.

4.1. Inverse radiative heat transfer

A list of inverse radiation heat transfer problems addressed
with GAs is presented in Table 9. In 1996, smoke parameters
(refraction index, absorption coefficient and particle mean diame-
ter) were determined by a standard BCGA in [138] but relatively
few information on the GA was presented. More recently, [28] min-
imized the error between estimated and desired heat fluxes on up
to 10 sub-surfaces of a cylindrical enclosure with gray and diffuse
surfaces. The medium in the enclosure was assumed to be non-par-
ticipating. The objective was to determine the temperature and
emissivity on each sub-surface. Calculation times were long, but
the resulting errors on the estimated emissivities and tempera-
tures were relatively small, 1.3% and 4.3%, respectively. Local
search was considered at the end of the GAs to improve the results.

Ref. [51] compared different algorithms for solving the inverse
problem consisting in determining simultaneously two radiative
properties (absorption coefficient and scattering coefficient) and
two surface emissivities for a participating medium in-between
two long parallel plates. The algorithm chosen was a binary micro-
GA using 8 individuals per population. The GA was found to be
slower than other procedures (Levenberg–Marquardt algorithm,
artificial neural network, and the Bayesian algorithm), but more ro-
bust. In Ref. [139], Li and Yang determined the scattering albedo, the
Table 9
Summary of the GAs used for inverse radiative heat transfer.

Article Problem

Objective Model No. of
variab

[138] Min. err. experimental vs.
computed

Analytical 3

[28] Min. err. desired vs. computed Integral equation of the second
kind

10

[51] Min err. experimental vs.
computated

Radiative transfer equation 4

[139] Min. error on intensities Radiative transfer equation Up to
optical thickness and the phase function with a GA, in order to min-
imize the discrepancies between measured and estimated intensi-
ties. Even though the first two parameters were fairly well
identified by the GA, some difficulties were encountered for estimat-
ing the phase function.

4.2. Inverse conduction heat transfer

Table 10 lists inverse conduction heat transfer problems in
which GAs were used. Jones et al. [140] used GAs to spot inhomo-
geneities. A conduction heat transfer inverse problem was solved
to determine the thermal conductivity mapping based on the tem-
perature measurement in a 2D surface. A standard BCGA mini-
mized the error between measured and estimated temperatures.
Successive zooming was applied around the identified inhomoge-
neities to finesse the conductivity map. Twenty-five blocks were
considered, i.e., the thermal conductivity in 25 zones was searched.
The GA ran with 200 individuals for 5 generations, first with a low
resolution, and then with a higher resolution around the inhomo-
geneity. Even though the GA identified properly the conductivity
mapping, it proved to be more computationally intensive then
other inversion methods (e.g., linearization technique).

A procedure for solving inverse heat conduction problems was
developed in [141]. The thermal conductivity and volumetric heat
capacity were assumed to vary linearly with the temperature, i.e.,
k = K1 + K2T and qcp = K3 + K4T, and the four coefficients K1, K2, K3

and K4 were determined by the GA for a 1D problem, in order to
minimize the error between measured and estimated tempera-
tures. Performances of GA were compared with an ANN trained
with 250 pairs of input–output obtained by the computed direct
task. GA showed to be slower but more precise, achieving errors
smaller than 0.1% on the temperature profile, against more than
1% with the ANN. However, both methods had significant errors
on one or two of the four coefficients K.

Similarly, [142] proposed a method relying on GAs for charac-
terizing a spatially dependent thermal conductivity, k(x). A polyno-
mial fit was considered for k, with up to 9 least-square points. The
method exhibited a great robustness. In [143], Orain et al. deter-
mined the thermal conductivity and two contact resistances of a
thin-film with a GA that minimized the difference between mea-
sured and calculated temperatures. Compared to the Gauss linear-
ization method and the parameteric study, the GA allowed a more
accurate simultaneous estimation of the parameters.

In [144,145], Garcia and Scott used an extended elitist GA to
optimize a design of experiment to estimate the thermal proper-
ties of composite materials. Sensor positions, input heat flux
duration and surface area were the design variables to maximize
the precision of the experiment (D-optimal criterion). The range
of each design variable was determined from an initial random
search. The initial population in the GA was built by conserving
the best designs of successive random search. After crossovers,
the next generation was formed at 80% from the best among
GA

les
Single/
multi

Bin/
real

Pcross Pmut Nind Maxgen Elitism

S B 0.6 0.01 101 N/A N/A

S R N/A N/A 10 100 Y

S B 0.5 0.02 8 400 Micro-
GA

22 S N/A N/A 0.005 2000–
5000

N/A N/A



Table 10
Summary of the GAs used for inverse conduction heat transfer.

Article Problem GA

Objective Model No. of
variables

Single/
multi

Bin/
Real

Pcross Pmut Nind Maxgen Elitism

[141] Min. error on T 1D-transient heat
conduction

4 S N/A N/A N/A 32 500 Y

[142] Min. error on T 2D conduction N/A S B N/A N/A N/A 200–750 N/A
[144] Max. D-optimal criterion 1D, 2D conduction N/A S R N/A N/A 50–200 10–200 Y
[145] Max. D-optimal criterion 1D, 2D heat transfer N/A S R N/A N/A 50–800 10–20 Y
[146] Min. error on T 1D, 2D conduction 8 S N/A N/A No 50 1% variation on the

3 last generation
Y

[147] Min. error on T 1D conduction and
Radiation

3 S B 0.5 0.02 100 100 N/A

[148] Min. error on K 1D conduction and
radiation

5 S N/A N/A N/A N/A N/A N/A

[149] Min. error on T 3D conduction 3 S N/A N/A N/A N/A N/A N/A
[150] Min. error on T 1D conduction 50 S N/A N/A N/A 32 500 Y
[151] Min. error on heat flux and

lag
1D conduction 3 S N/A N/A N/A N/A Diff. of 0.0001

between
the 2 last generation

N/A

[152] Min. error on heat load 1D conduction – RC model 4 S N/A N/A N/A N/A Diff. of 0.0001
between
the 2 last generations

N/A

[153] Min. error T RC thermal model N/A S B N/A N/A N/A N/A N/A
[154] Min. error on boundary

voltage
N/A N/A N/A N/A N/A N/A N/A N/A N/A

[140] Min. error between
measured
and calculated temperatures

2D conduction 25 S B 0.6 0.01 200 5 N/A

[143] Min. error between
calculated
and measured T

1D conduction 3 S N/A 0.9 N/A 300 200 Y
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children and parents, and at 20% from randomly generated de-
signs for which the design variable range was based on the elites
of the population. Test cases were considered. In case #1, the
conductivity perpendicular to fibers, the in-plane conductivity,
and the volumetric heat capacity of a composite material were
determined (conduction). In case #2, radiative and thermal prop-
erties of an insulator (conductivity, heat capacity, extinction
coefficient, scattering albedo and volumetric heat capacity of
the heater) were determined. Box-Kanernasu method (gradient
based approach) resulted in non-convergence in these cases,
but the GA was able to estimate the properties. Similarly, Han-
uska et al. [146] matched experimental and theoretical data by
optimizing through-the-thickness volumetric heat capacity and
through-the-thickness and in-plane conductivity of a composite
material.

In addition to [145], combined inverse conduction and inverse
radiative heat transfer with GAs was also studied by Verma and
Balaji [147] and Daryabeigi [148]. In [147], three properties (sur-
face emissivity, optical thickness and conduction radiation
parameter) were to be determined based on temperature mea-
surements with a 1D model. The results provided by the GA
were not so good: the error was high when the input data were
noisy. In [148] the properties to estimate were four (specific
extinction coefficient, albedo of scattering, backscattering frac-
tion and solid conduction exponent term), also with a 1D model.
In that case, results were good as the error between measured
and numerical data was generally minimized under the 7.5%
experimental uncertainty. Unfortunately, in that case, the set-
tings of the GA were not given to compare with [147].

Boundary conditions determination is an important class of in-
verse heat transfer problems. Liu et al. [149] sought to estimate the
convection coefficient h on all the faces of an electronic package.
3D conduction with reduced-basis method was combined with
FEM. Modifications to standard GAs were investigated. The number
of individuals was reduced when progressing in the GA (micro-GA).
A local search between generations proved to reduce the number
of generations required for convergence.

The determination of a transient heat transfer coefficient h(t) in
a 1D conduction problem was addressed in Ref. [150]. The objec-
tive was to minimize with the GA the error between estimated
and measured temperature profiles. A penalty was added when
h(t) varied too abruptly (regularization). The easiness of imple-
mentation was noted. The authors noted that after 500 genera-
tions, solutions stopped to improve. The number of h-values
determined was 50 (i.e., h at 50 times).

Conduction in building walls was represented by 3R2C, 2R2C
and R2C thermal circuits, respectively, in Refs. [151–153]. GAs
were used to determine the values of the capacitances and the
resistances of the model, by minimizing the error between mea-
surements and predicted values of heat fluxes and phase lags.

Adaptive mesh grouping method based on fuzzy-GA was intro-
duced to reduce the image reconstruction time significantly in
[154]. Resistivity in a domain was found based on measurements
of boundary voltage.

4.3. Inverse convection heat transfer

Even though Ref. [155] is focused mainly on fluid mechanics,
it provides an interesting view on how GA could be used for
determining the best settings of a complex CFD model, which
is certainly useful in convection heat transfer (Table 11). Three
constants of a turbulence model have been determined by a
BCGA in order to maximize the agreement between the CFD pre-
dictions and the experimental data. Reynolds-averaged Navier–
Stokes equations were considered, with a k–e model. A large
number of local minima were present which reinforces the inter-
est of GAs for this kind of problems. Each constant to determine
was coded with 10 bits, for a total of 30 bits per design. Differ-
ent population sizes were tested, and a population of five indi-
viduals was retained.



Table 11
Summary of the GAs used for inverse convection heat transfer.

Article Problem GA

Objective Model No. of variables Single/multi Bin/real Pcross Pmut Nind Maxgen Elitism

[155] Max. experimental-modeling agreement 3D CFD 3 S B 0.5 0 5 150 Y
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5. Fitting and estimation of model parameters

The development of correlations or relations based on a series
of experiments or numerical simulations is often complicated.
Authors have used GAs to minimize the error between a set of data
and a correlation that one wants to develop, by finding the appro-
priate fitting coefficients (Table 12). Similarly, as mentioned in the
previous section, the empirical parameters involved in models
(e.g., building models and turbulence models) can be determined
by a GA that compares simulations and experimental data.
(10/132 = 8% of the papers).

Pacheco-Vega et al. [156] found a good fitting for the heat trans-
fer coefficient in a heat exchanger with a GA. Four unknowns (fit-
ting coefficients for the Nusselt in and over the tubes) coded with a
total of 120 bits per individual were determined through regres-
sion analysis. They compared the GA with other optimization
methods (i.e., simulated annealing (SA) and interval analysis
(IM)). GA and SA were faster than the IM because they do not re-
quire information about the derivatives of the objective function.
An advantage of GA over SA is that it produces a set of possible
solutions at each iteration. However, noted the authors ‘‘GAs are
not guaranteed to obtain the global optimum but only the region
in which it is located with high probability. SA, on the other hand,
is probabilistically, though not deterministically, guaranteed to
find the optimum. The major virtue of IMs is that, unlike GAs
and SA, they guarantee that the global optimum has been found.”
However, IMs were computationally expensive to implement and
to run.

The heat transfer and pressure drop of three types of shell-
and-tube heat exchangers (one with conventional segmented
baffles and two with continuous helical baffles) were measured
experimentally with water (tube side) and oil (shell side), [157].
The GA determined the appropriate coefficients of the correlations
by minimizing the error of the correlations with respect to the
experimental data. Two coefficients for the heat transfer coeffi-
cient, and two other for the pressure drop were determined. Each
coefficient was coded with 30 bits. Tournament selection, uniform
crossover, and one-point mutation were selected. Niching and elit-
ism were adopted. Twenty individuals evolved for 1000 genera-
Table 12
Summary of the GAs used for fitting and model parameter estimation.

Article Problem

Objective Model No.
vari

[156] Min. error between correlation and experiment Analytical 4

[157] Min. error between correlation and experiment Analytical 4
[160] Min. error between correlation and experiment Analytical N/A
[161] Min. integrated err. exp. vs. predicted frequency

response
Analytical 3–4

[21] Min. complexity min. different err metrics Analytical
(ANN)

31

[162] Min. err. actual vs. predicted Analytical 27
[163] Min. err. actual vs. predicted Analytical 10
[164] Min. err. actual vs. predicted Analytical N/A
[165] Min. err. actual vs. predicted Analytical 7
[166] Min. err. actual vs. predicted Analytical 4
tions. The settings of the GA were based on Refs. [158–159].
Excellent results were achieved by the GA.

A correlation has been developed for the heat transfer coeffi-
cient on the exterior wall of a building with respect to wind veloc-
ity by minimizing with a BCGA the error of the correlation with
respect to experimental data [160]. Parameter estimation in build-
ing thermal model is often a difficult task. By finding a best fit of
the frequency response, three or four model parameters (thermal
resistance and thermal capacitances) were determined by a GA in
[161]. The algorithm was validated with a real case. In [21], a mul-
ti-objective GA (MOGA) selected the most relevant model inputs
and the topology of a radial basis function artificial neural network
(RBF-ANN) that predicted building temperature based on experi-
mental data. Sixteen objectives were defined and classified in three
categories: model complexity, model performance and model
validity. In other words, the GA had to find the most 2–30 relevant
model inputs out of 60 possible ones and choose the number of
neurons in the RBF-ANN in order to obtain the best fitting with
experimental data with the lowest structure complexity. Ten
percent of random immigrants, a survival rate of 50% and a
selection pressure of 2 were among the parameters chosen for
the GA. Random immigrants were new individuals reinserted
in each population and the survival rate was the proportion of
the offspring population that survived and reproduced at each
generation. The selection pressure coefficient amplified or re-
duced the weighted fitness gaps between individuals in order
to operate a more or less drastic selection process. Ozturk
et al. [162] minimized the error between actual energy inputs
of the residential and commercial sectors in Turkey and the pre-
diction of a model. Twenty-seven weighted factors associated to
the population, GDP, exports/imports, residential production, ce-
ment production and sales of house appliances were varied by a
BCGA with a crossover probability of 80% and a mutation rate of
2%. The population was made of 100 individuals. In [163], the
discrepancy between actual and estimated energy consumption
was minimized by a BCGA. Ten weighting factors were deter-
mined by the GA with a population of 20, evolving during 250
generations. The crossover and mutation probability were 50%
and 5%.
GA

of
ables

Single/
multi

Bin/
real

Pcross Pmut Nind Maxgen Elitism

S B 1 0.03 30 End at
2959

N/A

S B 0.5 0.005 20 1000 Y
B N/A N/A N/A N/A N/A N/A
S N/A N/A N/A N/A N/A N/A

M 0.7 N/A 100 100 N/A N/A

S B 0.8 0.02 100 450 N/A
S B 0.5 0.05 20 250 Y
S N/A N/A N/A N/A N/A N/A
S R 0.85 0.1 20 2000 N/A
S B 0.5 0.05 32 300 N/A
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GA was used to select most effective molecular descriptors that
affect the values of the standard chemical exergy [164]. This work
helped to find correlations for exergy by minimizing the error of
the correlation with experimental data.

Seven parameters of empirical equations in PEM modeling have
been determined by a RCGA in [165]. The authors wanted these
empirical parameters (scaled to vary between 0 and 1) to minimize
the difference between experimental and theoretical V–I curves.
The GA counted 20 individuals per population, and the mutation
rate was 10%. Niching and simplex local search were also included
in the optimization process. As described in Section 2, niching
helps maintaining the population diversity, and local search helps
the GA to finesse the search in a region of the variable space.

Balaji et al. [166] found wall function from correlations in the tur-
bulent natural convection parameter estimation problem. Four un-
known coefficients were determined with a standard BCGA to
minimize the difference between measured and predicted tempera-
tures. A comparison of the GA with the Levenberg–Marquardt algo-
rithm showed nearly identical results for both methods. However,
there was no comparison on the computational time required.

6. Other applications

In addition to the previous applications described above, a certain
number of applications of GAs to heat transfer related problems are
worth to mention (Table 13). For example, GAs have been envisioned
to solve matrix systems. Solving a matrix system of the form Ax = b is
a common task to perform in numerical heat transfer. It could be
translated into an equivalent residual minimization problem. The
GAs could thus be used to perform this minimization and determine
the ‘‘optimal” x. 2D conduction problems were solved that way with
a RCGA [167–168]. In [168], up to 196 unknowns (i.e., temperature at
196 nodes) were estimated. A ‘‘genetic engineering’’ operator (local
search) is proposed in which the best individual in each generation is
improved gene by gene. Elitism and wide range of population (10–
1000 individuals) were tested. Elitism and local search were also in-
cluded in the GA of [167]. Larger problems (up to 40,000 unknowns)
were addressed with a parallelized GA taking advantage of 152 pro-
cessors. Local search is performed as follows: immediately after the
fitness evaluation, a search is sequentially performed at each gene
locus across individuals for the allele with the smallest residual for
that locus. Small populations were used (10 individuals). In [169],
the authors used a BCGA to divide a domain into subdomains for par-
allel computing, by minimizing the communication between inter-
section nodes.

Phonon–phonon normal and Umklapp scattering processes
were modeled with a genetic algorithm to satisfy energy and
momentum conservation in [170]. Fitness was an indication of
how well the ensemble satisfied momentum and energy conserva-
tions and was reflected by two parameters which are the residuals
of the wave vector and the frequency. Twelve bits per phonon were
used.
Table 13
Summary of the GAs used for other applications.

Article Problem

Objective Model No. of
variables

[167] Min. residual 2D
conduction

Up to 40 000

[168] Min. residual 2D
conduction

196

[169] Min. communications between intersection
nodes

Algebraic N/A

[170] Min. residual Algebraic N/A
7. Conclusions

In this review, we presented the most recent publications dis-
cussing heat transfer related problems that were solved with ge-
netic algorithms. As demonstrated above, GAs have been used
increasingly by the heat transfer community, and could now be
qualified as a ‘‘mature” optimization approach in our field. There-
fore, one of the recommendations that we might formulate is that
it might not be necessary at this point to describe extensively the
GA procedure in new articles to be published, as has been done
regularly so far. However, the present review has also revealed that
many articles are not explicit as to what settings were used for
their GAs. For the sake of repeatability, it would be useful to pro-
vide insights as to what settings were used, in particular:

� Is the GA binary/real, single/multi-objective, elitist/non-elitist?
� What is the design representation?
� What are mutation and crossover probabilities?
� What is the convergence criterion?

Another aspect that is largely under-verified is the repeatability
of the GA as two runs with the same settings can potentially lead to
different results.

We have seen that the complexity level of the problems consid-
ered so far covers a wide range. The complexity of a problem in-
cludes the complexity of the modeling (e.g., model based on
analytical expressions vs. 3D-CFD model), and the number and
type of design variables. The models considered in the body of
work reviewed included mainly analytical expressions, but also
conduction and diffusion equations, CFD or radiative transfer equa-
tions. The number of design variables is typically relatively low
(i.e., �5 and less). Even though some successes were also achieved
with large numbers of design variables (e.g., 73 in [70] and 200 de-
sign variables in [73]), there is still a lot of work to accomplish to
solve and improve the convergence of complex problems either be-
cause of the large number of variables or because of the heavy
modeling while preserving the simplicity of GAs.

One promising avenue to do so is with parallel calculation
which can result in important computational time reduction. Opti-
mizations based on GAs are massively parallelizable because the
fitness of many individuals can be evaluated simultaneously by dif-
ferent processors, e.g., see [128,167].

Another option to be examined more thoroughly is the use of
approximations for the fitness function. In other words, in place
of calculating in details the fitness of an individual (for example
with a CFD simulation), one could use an approximation that yields
faster results. Artificial neural networks (ANN) and response sur-
face modeling (RSM) (see, e.g., Refs. [17–21,135]) are possible ways
to create these approximations.

Finally, more work should be done to evaluate quantitatively
and document the impact of the different GA settings and varia-
tions on the true performance of the algorithm for the kind of
GA

Single/
multi

Bin/
real

Pcross Pmut Nind Maxgen Elitism

S R Proportional
selection

N/A 10 500 Y

S R SRS N/A 10–
1000

200 Y

S B N/A 0.001 N/A 10000 N/A

S B N/A N/A N/A N/A N
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problems that are of interest to the heat transfer community. In
any case, modifications and improvements of GAs must try to pre-
serve its facility of use.
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